martes, 6 de mayo de 2014

sistema de numeración

Introducción. El Concepto de Base


Sistemas de Numeracion Aditivos


El Sistema de Numeración Egipcio


Al ser indiferente el orden se escribían a veces según criterios estéticos, y solían ir acompañados de los geroglíficos correspondientes al tipo de objeto (animales, prisioneros, vasijas etc.) cuyo número indicaban. En la figura aparece el 276 tal y como figura en una estela en Karnak. 
  Estos signos fueron utilizados hasta la incorporación de Egipto al imperio romano. Pero su uso quedó reservado a las inscripciones monumentales, en el uso diario fue sustituido por la escritura hierática y demótica, formas más simples que permitian mayor rapidez y comodidad a los escribas


El Sistema de Numeración Griego

Para representar la unidad y los números hasta el 4 se usaban trazos verticales. Para el 5, 10 y 100 las letras correspondientes a la inicial de la palabra cinco (pente), diez (deka) y mil (khiloi). Por este motivo se llama a este sistema acrofónico.
  De esta forma los números parecen palabras, ya que están compuestos por letras, y a su vez las palabras tienen un valor numérico, basta sumar las cifras que corresponden a las letras que las componen. Esta circunstancia hizo aparecer una nueva suerte de disciplina mágica que estudiaba la relación entre los números y las palabras. En algunas sociedades como la judía y la árabe, que utilizaban un sistema similar, el estudio de esta relación ha tenido una gran importancia y ha constituido una disciplina aparte: la kábala, que persigue fines místicos y adivinatorios.

Sistemas de Numeracion Híbridos


El Sistema de Numeración Chino





   Tradicionalmente se ha escrito de arriba abajo aunque también se hace de izquierda a derecha como en el ejemplo de la figura. No es necesario un símbolo para el cero siempre y cuando se pongan todos los ideogramas, pero aún así a veces se

Sistemas de Numeración Posicionales



  Sólo tres culturas además de la india lograron desarrollar un sistema de este tipo. Babilonios, chinos y mayas en distintas épocas llegaron al mismo principio. La ausencia del cero impidió a los chinos un desarrollo completo hasta la intraducción del mismo. Los sistemas babilónico y maya no eran prácticos para operar porque no disponían de simbolos particulares para los dígitos, usando para representarlos una acumulación del signo de la unidad y la decena. El hecho que sus bases fuese 60 y 20 respectivamente no hubiese representado en principio nigún obstáculo. Los mayas por su parte cometían una irregularidad a partir de las unidades de tercer orden, ya que detrás de las veintenas no usaban 20x20=400 sino 20x18=360 para adecuar los números al calendario, una de sus mayores preocupaciones culturales. 

El Sistema de Numeración Babilónico

   Para la unidad se usaba la marca vertical que se hacía con el punzón en forma de cuña. Se ponían tantos como fuera preciso hasta llegar a 10, que tenía su propio signo.










El Sistema de Numeración Maya












Operaciones básicas (Suma, Resta, Multiplicación, División)


Suma de números binarios

La tabla de sumar para números binarios es la siguiente:

 +
 0
 110 

Las posibles combinaciones al sumar dos bits son:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente, en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.

Ejemplo

 Acarreo  1     
 11
 +
 Resultado001

Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas la columnas (exactamente como en decimal).


Resta de números binarios
El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.
Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:
0 - 0 = 0
1 - 0 = 1
1 - 1 = 0
0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)
La resta 0 - 1 se resuelve, igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1, lo que equivale a decir en el sistema decimal, 2 - 1 = 1.

En decimal, por ejemplo tienes 100-19, obviamente a 0 no le puedes quitar 9, así que debemos tomar prestado 1 para volverlo un 10 (en decimal la base es 10), y así si 10-9=1.

En binarios pasa lo mismo, no le puedes quitar 1 a 0, debes de tomar 1 prestado al de un lado, pero cuidado aquí viene lo complicado tu numero no se va a volver 10, recuerda que en binario la base es 2 y por lo tanto se volverá 2 en binario, y ahora sí a 2 le quitas 1, 2-1=1, y continuas restando pero recuerda que llevas 1, porque pediste prestado.

Ejemplo para que le entiendas mejor, vamos a restar 201 - 67, ya sabemos que es 134, vamos a hacerlo en binario :

  1 1 0 0 1 0 0 1.......................201
- 0 1 0 0 0 0 1 1.......................67

Tomamos los dos últimos números, 1-1 es igual a 0, y no llevamos nada (no pedimos prestado)

  1 1 0 0 1 0 0 1
- 0 1 0 0 0 0 1 1
------------------------
                        0

Ahora la siguiente columna 0-1, ya dijimos que no se puede, así que va a tomar 1 prestado al de la columna del lado izquierdo, se que vas a decir "es un cero, no nos puede prestar 1", lo que pasa es que ese cero le pide a su vez al de lado, y así hasta que encuentres un 1, pero no te fijes en eso, vamos a seguir restando y no nos vamos a preocupar por eso ahora, entonces ahora nos prestaron 1 (no importa quién) y tenemos un 1 0 (este numero es 2 en binario no 10 en decimal, no te vayas a confundir), entonces en binario tienes 10-1, que en decimal es 2-1=1, y llevamos 1 (porque pedimos 1 prestado)

  1 1 0 0 1 0 0 1 arriba
- 0 1 0 0 0 0 1 1 abajo
------------------------
                    1 0

Para la siguiente columna tenemos 0 - 0, pero recuerda que tomamos 1 prestado así que en realidad tenemos 0 - 1 (le sumamos el 1 al de abajo), de nuevo tenemos que pedir prestado y entonces tenemos en binaria 1 0 -1 que en decimal es 2-1=1, y de nuevo llevamos 1

  1 1 0 0 1 0 0 1
- 0 1 0 0 0 0 1 1
------------------------
                 1 1 0

Continuamos con 1 - 0 , pero como llevamos 1 tenemos ahora 1 - 1, esto si lo podemos resolver 1 - 1 = 1 (en binario y decimal).

  1 1 0 0 1 0 0 1
- 0 1 0 0 0 0 1 1
------------------------
              0 1 1 0

Lo demás es muy fácil:
0 - 0=0
0 - 0=0
1 - 1=0
1 - 0=1


  1 1 0 0 1 0 0 1
- 0 1 0 0 0 0 1 1
------------------------
  1 0 0 0 0 1 1 0       que en decimal es 134.

Es lo mismo que la resta en decimal, pides prestado y llevas, nada más debes de ser cuidadoso y recordar que tu base es 2.

"En este mundo solo existen 10 tipos de personas, las que saben binario y las que no" =)



PRODUCTO DE NÚMEROS BINARIOS
La tabla de multiplicar para números binarios es la siguiente:
  ·  0  1
  0  0  0
  1  0  1
El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.
Por ejemplo, multipliquemos 10110 por 1001:
        10110  X  1001                            
                       10110               
                    00000                
                  00000                
                10110                
                11000110


División de números binarios
La división en binario es similar al decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.
Ejemplo
Dividir 100010010 (274) entre 1101 (13):

  100010010 |1101
-0000                010101   
  10001
   -1101
     01000
    - 0000
       10000
       - 1101
         00011
         - 0000
            01110
            - 1101
            00001

Operaciones Sistema Hexadecimal.


Suma.

Debe de considerar la siguiente tabla para realizar una suma.
Imagen

Ejemplo
Imagen


Resta.

Imagen


Multiplicacion.

Para la realizacion de una multiplicacion en el sistema Hexadecimal es nesesario considerar  las tablas de  multiplicar en el sistema decimal.
Imagen
Ejemplo.
Imagen

RESEÑA HISTORICA DE LA LOGICA

Estas tablas pueden construirse haciendo una interpretación de los signos lógicos,Ø, Ù, Ú, ®, «,como: no, o, y, si…entonces, sí y sólo si, respectivamente. La interpretación corresponde al sentido que estas operaciones tienen dentro del razonamiento.
Puede establecerse una correspondencia entre los resultados de estas tablas y la deducción lógico matemática. En consecuencia, las tablas de verdad constituyen un método de decisiónpara chequear si una proposición es o no un teorema.
Para la construcción de la tabla se asignará el valor 1(uno) a una proposición cierta y 0 (cero) a una proposición falsa.
Negación: El valor de verdad de la negación es el contrario de la proposición negada.
P
Ø P
1
0
0
1

 
Disyunción: La disyunción solamente es falsa si lo son sus dos componentes.
P
Q
P Ú Q
1
1
1
1
0
1
0
1
1
0
0
0

 
Conjunción: Solamente si las componentes de la conjunción son ciertas, la conjunción es cierta.
P
Q
Ù Q
1
1
1
1
0
0
0
1
0
0
0
0

 
Condicional:  El condicional solamente es falso cuando el antecedente es verdadero y el consecuente es falso. De la verdad no se puede seguir la falsedad.
P
Q
P®Q
1
1
1
1
0
0
0
1
1
0
0
1

 
Bicondicional: El bicondicional solamente es cierto si sus componentes tienen el mismo valor de verdad.
P
Q
P« Q
1
1
1
1
0
0
0
1
0
0
0
1

 
Se denomina tautología una proposición que es cierta para cualquier valor de verdad de sus componentes. Por tanto, la última columna de su tabla de verdad estará formada únicamente por unos.

Contradicción es la negación de una tautología, luego es una proposición falsa cualesquiera sea el valor de verdad de sus componentes. La última columna de la tabla de verdad de una contradicción estará formada únicamente por ceros.

Ejercicios 1.3

1. Sean P, Q, R y S fórmulas. Si se sabe únicamente que P es verdadero, ¿Qué puede afirmarse del valor de verdad de cada una las proposiciones siguientes?
  • P Ù Q           R ® P                   S ®Ø P
  • R Ú P       P ® Q             R® (S® P)
  • Ù P       P ® P Ú S        P Ú S ® (Q Ù Ø P)
  • S ÚØ P       Ø P ® Q Ù R     Q Ù Ø P ® R Ù Q

2. ¿Qué puede concluirse de cada una de las proposiciones anteriores, en los siguientes casos?
  • Si P es falsa.
  • Si P es falsa, Q es verdadera y R es verdadera.

3. Sean P, Q y R fórmulas , entonces:
  • Si R Ú P ® Q Ù P es falsa y P es falsa; ¿Qué puede afirmarse de R y de Q?.
  • Si Q Þ Q Ù P es verdadera y P es falsa; ¿Qué puede afirmarse de Q?.
  • Si R Ù P Þ Ù P es falsa; ¿Qué puede afirmarse de P, Q y R?.
  • Si (Q Ú R) ® (P Ù Q) Ú R es falsa; ¿Qué puede afirmarse de P, Q y R?.
  • Si (P Þ Q) Þ ( R Ú P Þ R Ú Q) es verdadera; ¿Qué puede afirmarse de P, Q y R?

4. Sean P, Q y R fórmulas. Determinar cuales de las siguientes proposiciones son tautologías:
  • Ù ® Ù R                  (P ® Q ) ® Ø ® P )
  • ® Ù Q                       (P « Q) Ù (P Ù Ø Q)
  • Ù Ø (Q Ú P)                    P Ù Ø ((P Ú Q) Ú R)
  • (P ® (Q Ú Ø P)) ® Ø Q       P Ú (Ø Ú R)